This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resfsupp.b | ⊢ ( 𝜑 → ( dom 𝐹 ∖ 𝐵 ) ∈ Fin ) | |
| resfsupp.e | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | ||
| resfsupp.f | ⊢ ( 𝜑 → Fun 𝐹 ) | ||
| resfsupp.g | ⊢ ( 𝜑 → 𝐺 = ( 𝐹 ↾ 𝐵 ) ) | ||
| resfsupp.s | ⊢ ( 𝜑 → 𝐺 finSupp 𝑍 ) | ||
| resfsupp.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| Assertion | resfsupp | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resfsupp.b | ⊢ ( 𝜑 → ( dom 𝐹 ∖ 𝐵 ) ∈ Fin ) | |
| 2 | resfsupp.e | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | |
| 3 | resfsupp.f | ⊢ ( 𝜑 → Fun 𝐹 ) | |
| 4 | resfsupp.g | ⊢ ( 𝜑 → 𝐺 = ( 𝐹 ↾ 𝐵 ) ) | |
| 5 | resfsupp.s | ⊢ ( 𝜑 → 𝐺 finSupp 𝑍 ) | |
| 6 | resfsupp.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 7 | 5 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐺 supp 𝑍 ) ∈ Fin ) |
| 8 | 1 2 4 7 6 | ressuppfi | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
| 9 | funisfsupp | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) | |
| 10 | 3 2 6 9 | syl3anc | ⊢ ( 𝜑 → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) |
| 11 | 8 10 | mpbird | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |