This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the support of the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finite, the support of the function itself is finite. (Contributed by AV, 22-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressuppfi.b | |- ( ph -> ( dom F \ B ) e. Fin ) |
|
| ressuppfi.f | |- ( ph -> F e. W ) |
||
| ressuppfi.g | |- ( ph -> G = ( F |` B ) ) |
||
| ressuppfi.s | |- ( ph -> ( G supp Z ) e. Fin ) |
||
| ressuppfi.z | |- ( ph -> Z e. V ) |
||
| Assertion | ressuppfi | |- ( ph -> ( F supp Z ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressuppfi.b | |- ( ph -> ( dom F \ B ) e. Fin ) |
|
| 2 | ressuppfi.f | |- ( ph -> F e. W ) |
|
| 3 | ressuppfi.g | |- ( ph -> G = ( F |` B ) ) |
|
| 4 | ressuppfi.s | |- ( ph -> ( G supp Z ) e. Fin ) |
|
| 5 | ressuppfi.z | |- ( ph -> Z e. V ) |
|
| 6 | 3 | eqcomd | |- ( ph -> ( F |` B ) = G ) |
| 7 | 6 | oveq1d | |- ( ph -> ( ( F |` B ) supp Z ) = ( G supp Z ) ) |
| 8 | 7 4 | eqeltrd | |- ( ph -> ( ( F |` B ) supp Z ) e. Fin ) |
| 9 | unfi | |- ( ( ( ( F |` B ) supp Z ) e. Fin /\ ( dom F \ B ) e. Fin ) -> ( ( ( F |` B ) supp Z ) u. ( dom F \ B ) ) e. Fin ) |
|
| 10 | 8 1 9 | syl2anc | |- ( ph -> ( ( ( F |` B ) supp Z ) u. ( dom F \ B ) ) e. Fin ) |
| 11 | ressuppssdif | |- ( ( F e. W /\ Z e. V ) -> ( F supp Z ) C_ ( ( ( F |` B ) supp Z ) u. ( dom F \ B ) ) ) |
|
| 12 | 2 5 11 | syl2anc | |- ( ph -> ( F supp Z ) C_ ( ( ( F |` B ) supp Z ) u. ( dom F \ B ) ) ) |
| 13 | 10 12 | ssfid | |- ( ph -> ( F supp Z ) e. Fin ) |