This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Values for the group multiple function in a restricted structure, a deduction version. (Contributed by metakunt, 14-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressmulgnnd.1 | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| ressmulgnnd.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) | ||
| ressmulgnnd.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| ressmulgnnd.4 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| Assertion | ressmulgnnd | ⊢ ( 𝜑 → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulgnnd.1 | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| 2 | ressmulgnnd.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) | |
| 3 | ressmulgnnd.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 4 | ressmulgnnd.4 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 5 | 4 | nngt0d | ⊢ ( 𝜑 → 0 < 𝑁 ) |
| 6 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝑁 ∈ ℕ ) |
| 7 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝑋 ∈ 𝐴 ) |
| 8 | eqid | ⊢ ( 𝐺 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 10 | 8 9 | ressbas2 | ⊢ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) → 𝐴 = ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) ) |
| 11 | 2 10 | syl | ⊢ ( 𝜑 → 𝐴 = ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝐴 = ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) ) |
| 13 | eqcom | ⊢ ( 𝐻 = ( 𝐺 ↾s 𝐴 ) ↔ ( 𝐺 ↾s 𝐴 ) = 𝐻 ) | |
| 14 | 1 13 | mpbi | ⊢ ( 𝐺 ↾s 𝐴 ) = 𝐻 |
| 15 | 14 | fveq2i | ⊢ ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) = ( Base ‘ 𝐻 ) |
| 16 | 15 | a1i | ⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( Base ‘ ( 𝐺 ↾s 𝐴 ) ) = ( Base ‘ 𝐻 ) ) |
| 17 | 12 16 | eqtrd | ⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
| 18 | 7 17 | eleqtrd | ⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
| 19 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 20 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 21 | eqid | ⊢ ( .g ‘ 𝐻 ) = ( .g ‘ 𝐻 ) | |
| 22 | eqid | ⊢ seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) | |
| 23 | 19 20 21 22 | mulgnn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 24 | 6 18 23 | syl2anc | ⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 25 | fvexd | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) ∈ V ) | |
| 26 | 25 2 | ssexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 27 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 28 | 1 27 | ressplusg | ⊢ ( 𝐴 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 29 | 26 28 | syl | ⊢ ( 𝜑 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 30 | 29 | eqcomd | ⊢ ( 𝜑 → ( +g ‘ 𝐻 ) = ( +g ‘ 𝐺 ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( +g ‘ 𝐻 ) = ( +g ‘ 𝐺 ) ) |
| 32 | 31 | seqeq2d | ⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ) |
| 33 | 32 | fveq1d | ⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 34 | 2 3 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 35 | 34 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 36 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 37 | eqid | ⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) | |
| 38 | 9 27 36 37 | mulgnn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 39 | 6 35 38 | syl2anc | ⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 40 | 39 | eqcomd | ⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) = ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) |
| 41 | 24 33 40 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) |
| 42 | 41 | ex | ⊢ ( 𝜑 → ( 0 < 𝑁 → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) ) |
| 43 | 5 42 | mpd | ⊢ ( 𝜑 → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ( .g ‘ 𝐺 ) 𝑋 ) ) |