This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of resfunexg , shorter but requiring ax-pow and ax-un . (Contributed by NM, 7-Apr-1995) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resfunexgALT | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ↾ 𝐵 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmresexg | ⊢ ( 𝐵 ∈ 𝐶 → dom ( 𝐴 ↾ 𝐵 ) ∈ V ) | |
| 2 | 1 | adantl | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → dom ( 𝐴 ↾ 𝐵 ) ∈ V ) |
| 3 | df-ima | ⊢ ( 𝐴 “ 𝐵 ) = ran ( 𝐴 ↾ 𝐵 ) | |
| 4 | funimaexg | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 “ 𝐵 ) ∈ V ) | |
| 5 | 3 4 | eqeltrrid | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ran ( 𝐴 ↾ 𝐵 ) ∈ V ) |
| 6 | 2 5 | jca | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( dom ( 𝐴 ↾ 𝐵 ) ∈ V ∧ ran ( 𝐴 ↾ 𝐵 ) ∈ V ) ) |
| 7 | xpexg | ⊢ ( ( dom ( 𝐴 ↾ 𝐵 ) ∈ V ∧ ran ( 𝐴 ↾ 𝐵 ) ∈ V ) → ( dom ( 𝐴 ↾ 𝐵 ) × ran ( 𝐴 ↾ 𝐵 ) ) ∈ V ) | |
| 8 | relres | ⊢ Rel ( 𝐴 ↾ 𝐵 ) | |
| 9 | relssdmrn | ⊢ ( Rel ( 𝐴 ↾ 𝐵 ) → ( 𝐴 ↾ 𝐵 ) ⊆ ( dom ( 𝐴 ↾ 𝐵 ) × ran ( 𝐴 ↾ 𝐵 ) ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( 𝐴 ↾ 𝐵 ) ⊆ ( dom ( 𝐴 ↾ 𝐵 ) × ran ( 𝐴 ↾ 𝐵 ) ) |
| 11 | ssexg | ⊢ ( ( ( 𝐴 ↾ 𝐵 ) ⊆ ( dom ( 𝐴 ↾ 𝐵 ) × ran ( 𝐴 ↾ 𝐵 ) ) ∧ ( dom ( 𝐴 ↾ 𝐵 ) × ran ( 𝐴 ↾ 𝐵 ) ) ∈ V ) → ( 𝐴 ↾ 𝐵 ) ∈ V ) | |
| 12 | 10 11 | mpan | ⊢ ( ( dom ( 𝐴 ↾ 𝐵 ) × ran ( 𝐴 ↾ 𝐵 ) ) ∈ V → ( 𝐴 ↾ 𝐵 ) ∈ V ) |
| 13 | 6 7 12 | 3syl | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ↾ 𝐵 ) ∈ V ) |