This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of resfunexg , shorter but requiring ax-pow and ax-un . (Contributed by NM, 7-Apr-1995) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resfunexgALT | |- ( ( Fun A /\ B e. C ) -> ( A |` B ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmresexg | |- ( B e. C -> dom ( A |` B ) e. _V ) |
|
| 2 | 1 | adantl | |- ( ( Fun A /\ B e. C ) -> dom ( A |` B ) e. _V ) |
| 3 | df-ima | |- ( A " B ) = ran ( A |` B ) |
|
| 4 | funimaexg | |- ( ( Fun A /\ B e. C ) -> ( A " B ) e. _V ) |
|
| 5 | 3 4 | eqeltrrid | |- ( ( Fun A /\ B e. C ) -> ran ( A |` B ) e. _V ) |
| 6 | 2 5 | jca | |- ( ( Fun A /\ B e. C ) -> ( dom ( A |` B ) e. _V /\ ran ( A |` B ) e. _V ) ) |
| 7 | xpexg | |- ( ( dom ( A |` B ) e. _V /\ ran ( A |` B ) e. _V ) -> ( dom ( A |` B ) X. ran ( A |` B ) ) e. _V ) |
|
| 8 | relres | |- Rel ( A |` B ) |
|
| 9 | relssdmrn | |- ( Rel ( A |` B ) -> ( A |` B ) C_ ( dom ( A |` B ) X. ran ( A |` B ) ) ) |
|
| 10 | 8 9 | ax-mp | |- ( A |` B ) C_ ( dom ( A |` B ) X. ran ( A |` B ) ) |
| 11 | ssexg | |- ( ( ( A |` B ) C_ ( dom ( A |` B ) X. ran ( A |` B ) ) /\ ( dom ( A |` B ) X. ran ( A |` B ) ) e. _V ) -> ( A |` B ) e. _V ) |
|
| 12 | 10 11 | mpan | |- ( ( dom ( A |` B ) X. ran ( A |` B ) ) e. _V -> ( A |` B ) e. _V ) |
| 13 | 6 7 12 | 3syl | |- ( ( Fun A /\ B e. C ) -> ( A |` B ) e. _V ) |