This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word is a "repeated symbol word" iff each of its symbols equals the first symbol of the word. (Contributed by AV, 10-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repswsymballbi | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑊 = ∅ → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ∅ ) ) | |
| 2 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 3 | 1 2 | eqtrdi | ⊢ ( 𝑊 = ∅ → ( ♯ ‘ 𝑊 ) = 0 ) |
| 4 | fvex | ⊢ ( 𝑊 ‘ 0 ) ∈ V | |
| 5 | repsw0 | ⊢ ( ( 𝑊 ‘ 0 ) ∈ V → ( ( 𝑊 ‘ 0 ) repeatS 0 ) = ∅ ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ( 𝑊 ‘ 0 ) repeatS 0 ) = ∅ |
| 7 | 6 | eqcomi | ⊢ ∅ = ( ( 𝑊 ‘ 0 ) repeatS 0 ) |
| 8 | simpr | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 0 ∧ 𝑊 = ∅ ) → 𝑊 = ∅ ) | |
| 9 | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) = ( ( 𝑊 ‘ 0 ) repeatS 0 ) ) | |
| 10 | 9 | adantr | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 0 ∧ 𝑊 = ∅ ) → ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) = ( ( 𝑊 ‘ 0 ) repeatS 0 ) ) |
| 11 | 7 8 10 | 3eqtr4a | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 0 ∧ 𝑊 = ∅ ) → 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ) |
| 12 | ral0 | ⊢ ∀ 𝑖 ∈ ∅ ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) | |
| 13 | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 0 ) ) | |
| 14 | fzo0 | ⊢ ( 0 ..^ 0 ) = ∅ | |
| 15 | 13 14 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ∅ ) |
| 16 | 15 | raleqdv | ⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ↔ ∀ 𝑖 ∈ ∅ ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 17 | 12 16 | mpbiri | ⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
| 18 | 17 | adantr | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 0 ∧ 𝑊 = ∅ ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) |
| 19 | 11 18 | 2thd | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 0 ∧ 𝑊 = ∅ ) → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 20 | 3 19 | mpancom | ⊢ ( 𝑊 = ∅ → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 21 | 20 | a1d | ⊢ ( 𝑊 = ∅ → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
| 22 | df-3an | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) | |
| 23 | 22 | a1i | ⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
| 24 | fstwrdne | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) | |
| 25 | 24 | ancoms | ⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) |
| 26 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 27 | 26 | adantl | ⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 28 | repsdf2 | ⊢ ( ( ( 𝑊 ‘ 0 ) ∈ 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) | |
| 29 | 25 27 28 | syl2anc | ⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
| 30 | simpr | ⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → 𝑊 ∈ Word 𝑉 ) | |
| 31 | eqidd | ⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) | |
| 32 | 30 31 | jca | ⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) ) |
| 33 | 32 | biantrurd | ⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
| 34 | 23 29 33 | 3bitr4d | ⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |
| 35 | 34 | ex | ⊢ ( 𝑊 ≠ ∅ → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) ) |
| 36 | 21 35 | pm2.61ine | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 = ( ( 𝑊 ‘ 0 ) repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) ) |