This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word is a "repeated symbol word" iff each of its symbols equals the first symbol of the word. (Contributed by AV, 10-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repswsymballbi | |- ( W e. Word V -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( W = (/) -> ( # ` W ) = ( # ` (/) ) ) |
|
| 2 | hash0 | |- ( # ` (/) ) = 0 |
|
| 3 | 1 2 | eqtrdi | |- ( W = (/) -> ( # ` W ) = 0 ) |
| 4 | fvex | |- ( W ` 0 ) e. _V |
|
| 5 | repsw0 | |- ( ( W ` 0 ) e. _V -> ( ( W ` 0 ) repeatS 0 ) = (/) ) |
|
| 6 | 4 5 | ax-mp | |- ( ( W ` 0 ) repeatS 0 ) = (/) |
| 7 | 6 | eqcomi | |- (/) = ( ( W ` 0 ) repeatS 0 ) |
| 8 | simpr | |- ( ( ( # ` W ) = 0 /\ W = (/) ) -> W = (/) ) |
|
| 9 | oveq2 | |- ( ( # ` W ) = 0 -> ( ( W ` 0 ) repeatS ( # ` W ) ) = ( ( W ` 0 ) repeatS 0 ) ) |
|
| 10 | 9 | adantr | |- ( ( ( # ` W ) = 0 /\ W = (/) ) -> ( ( W ` 0 ) repeatS ( # ` W ) ) = ( ( W ` 0 ) repeatS 0 ) ) |
| 11 | 7 8 10 | 3eqtr4a | |- ( ( ( # ` W ) = 0 /\ W = (/) ) -> W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) |
| 12 | ral0 | |- A. i e. (/) ( W ` i ) = ( W ` 0 ) |
|
| 13 | oveq2 | |- ( ( # ` W ) = 0 -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ 0 ) ) |
|
| 14 | fzo0 | |- ( 0 ..^ 0 ) = (/) |
|
| 15 | 13 14 | eqtrdi | |- ( ( # ` W ) = 0 -> ( 0 ..^ ( # ` W ) ) = (/) ) |
| 16 | 15 | raleqdv | |- ( ( # ` W ) = 0 -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) <-> A. i e. (/) ( W ` i ) = ( W ` 0 ) ) ) |
| 17 | 12 16 | mpbiri | |- ( ( # ` W ) = 0 -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
| 18 | 17 | adantr | |- ( ( ( # ` W ) = 0 /\ W = (/) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) |
| 19 | 11 18 | 2thd | |- ( ( ( # ` W ) = 0 /\ W = (/) ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 20 | 3 19 | mpancom | |- ( W = (/) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 21 | 20 | a1d | |- ( W = (/) -> ( W e. Word V -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
| 22 | df-3an | |- ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) <-> ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
|
| 23 | 22 | a1i | |- ( ( W =/= (/) /\ W e. Word V ) -> ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) <-> ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
| 24 | fstwrdne | |- ( ( W e. Word V /\ W =/= (/) ) -> ( W ` 0 ) e. V ) |
|
| 25 | 24 | ancoms | |- ( ( W =/= (/) /\ W e. Word V ) -> ( W ` 0 ) e. V ) |
| 26 | lencl | |- ( W e. Word V -> ( # ` W ) e. NN0 ) |
|
| 27 | 26 | adantl | |- ( ( W =/= (/) /\ W e. Word V ) -> ( # ` W ) e. NN0 ) |
| 28 | repsdf2 | |- ( ( ( W ` 0 ) e. V /\ ( # ` W ) e. NN0 ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
|
| 29 | 25 27 28 | syl2anc | |- ( ( W =/= (/) /\ W e. Word V ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
| 30 | simpr | |- ( ( W =/= (/) /\ W e. Word V ) -> W e. Word V ) |
|
| 31 | eqidd | |- ( ( W =/= (/) /\ W e. Word V ) -> ( # ` W ) = ( # ` W ) ) |
|
| 32 | 30 31 | jca | |- ( ( W =/= (/) /\ W e. Word V ) -> ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) ) |
| 33 | 32 | biantrurd | |- ( ( W =/= (/) /\ W e. Word V ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) <-> ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
| 34 | 23 29 33 | 3bitr4d | |- ( ( W =/= (/) /\ W e. Word V ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |
| 35 | 34 | ex | |- ( W =/= (/) -> ( W e. Word V -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) ) |
| 36 | 21 35 | pm2.61ine | |- ( W e. Word V -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) |