This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All the symbols of a "repeated symbol word" are the same. (Contributed by AV, 10-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repswsymball | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( 𝑊 = ( 𝑆 repeatS ( ♯ ‘ 𝑊 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) ) |
| 3 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 4 | 3 | anim1ci | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( 𝑆 ∈ 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) ) |
| 5 | repsdf2 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) → ( 𝑊 = ( 𝑆 repeatS ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( 𝑊 = ( 𝑆 repeatS ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) ) |
| 7 | simpl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → 𝑊 ∈ Word 𝑉 ) | |
| 8 | eqidd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) | |
| 9 | 7 8 | jca | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) ) |
| 10 | 9 | biantrurd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) ) |
| 11 | 2 6 10 | 3bitr4d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( 𝑊 = ( 𝑆 repeatS ( ♯ ‘ 𝑊 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) |
| 12 | 11 | biimpd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( 𝑊 = ( 𝑆 repeatS ( ♯ ‘ 𝑊 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) |