This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construct a function mapping a half-open range of nonnegative integers to a constant. (Contributed by AV, 4-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reps | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑆 repeatS 𝑁 ) = ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ V ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → 𝑆 ∈ V ) |
| 3 | simpr | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 4 | ovex | ⊢ ( 0 ..^ 𝑁 ) ∈ V | |
| 5 | mptexg | ⊢ ( ( 0 ..^ 𝑁 ) ∈ V → ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑆 ) ∈ V ) | |
| 6 | 4 5 | mp1i | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑆 ) ∈ V ) |
| 7 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 0 ..^ 𝑛 ) = ( 0 ..^ 𝑁 ) ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑛 = 𝑁 ) → ( 0 ..^ 𝑛 ) = ( 0 ..^ 𝑁 ) ) |
| 9 | simpll | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑛 = 𝑁 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑛 ) ) → 𝑠 = 𝑆 ) | |
| 10 | 8 9 | mpteq12dva | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑛 = 𝑁 ) → ( 𝑥 ∈ ( 0 ..^ 𝑛 ) ↦ 𝑠 ) = ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑆 ) ) |
| 11 | df-reps | ⊢ repeatS = ( 𝑠 ∈ V , 𝑛 ∈ ℕ0 ↦ ( 𝑥 ∈ ( 0 ..^ 𝑛 ) ↦ 𝑠 ) ) | |
| 12 | 10 11 | ovmpoga | ⊢ ( ( 𝑆 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑆 ) ∈ V ) → ( 𝑆 repeatS 𝑁 ) = ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑆 ) ) |
| 13 | 2 3 6 12 | syl3anc | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑆 repeatS 𝑁 ) = ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑆 ) ) |