This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "repeated symbol word" of length three. (Contributed by AV, 6-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repsw3 | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 3 ) = 〈“ 𝑆 𝑆 𝑆 ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s3 | ⊢ 〈“ 𝑆 𝑆 𝑆 ”〉 = ( 〈“ 𝑆 𝑆 ”〉 ++ 〈“ 𝑆 ”〉 ) | |
| 2 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 3 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 4 | repswccat | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 2 ∈ ℕ0 ∧ 1 ∈ ℕ0 ) → ( ( 𝑆 repeatS 2 ) ++ ( 𝑆 repeatS 1 ) ) = ( 𝑆 repeatS ( 2 + 1 ) ) ) | |
| 5 | 2 3 4 | mp3an23 | ⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝑆 repeatS 2 ) ++ ( 𝑆 repeatS 1 ) ) = ( 𝑆 repeatS ( 2 + 1 ) ) ) |
| 6 | repsw2 | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 2 ) = 〈“ 𝑆 𝑆 ”〉 ) | |
| 7 | repsw1 | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 1 ) = 〈“ 𝑆 ”〉 ) | |
| 8 | 6 7 | oveq12d | ⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝑆 repeatS 2 ) ++ ( 𝑆 repeatS 1 ) ) = ( 〈“ 𝑆 𝑆 ”〉 ++ 〈“ 𝑆 ”〉 ) ) |
| 9 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 10 | 9 | a1i | ⊢ ( 𝑆 ∈ 𝑉 → ( 2 + 1 ) = 3 ) |
| 11 | 10 | oveq2d | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS ( 2 + 1 ) ) = ( 𝑆 repeatS 3 ) ) |
| 12 | 5 8 11 | 3eqtr3d | ⊢ ( 𝑆 ∈ 𝑉 → ( 〈“ 𝑆 𝑆 ”〉 ++ 〈“ 𝑆 ”〉 ) = ( 𝑆 repeatS 3 ) ) |
| 13 | 1 12 | eqtr2id | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 3 ) = 〈“ 𝑆 𝑆 𝑆 ”〉 ) |