This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "repeated symbol word" of length two. (Contributed by AV, 6-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repsw2 | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 2 ) = 〈“ 𝑆 𝑆 ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s2 | ⊢ 〈“ 𝑆 𝑆 ”〉 = ( 〈“ 𝑆 ”〉 ++ 〈“ 𝑆 ”〉 ) | |
| 2 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 3 | repswccat | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 1 ∈ ℕ0 ∧ 1 ∈ ℕ0 ) → ( ( 𝑆 repeatS 1 ) ++ ( 𝑆 repeatS 1 ) ) = ( 𝑆 repeatS ( 1 + 1 ) ) ) | |
| 4 | 2 2 3 | mp3an23 | ⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝑆 repeatS 1 ) ++ ( 𝑆 repeatS 1 ) ) = ( 𝑆 repeatS ( 1 + 1 ) ) ) |
| 5 | repsw1 | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 1 ) = 〈“ 𝑆 ”〉 ) | |
| 6 | 5 5 | oveq12d | ⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝑆 repeatS 1 ) ++ ( 𝑆 repeatS 1 ) ) = ( 〈“ 𝑆 ”〉 ++ 〈“ 𝑆 ”〉 ) ) |
| 7 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 8 | 7 | a1i | ⊢ ( 𝑆 ∈ 𝑉 → ( 1 + 1 ) = 2 ) |
| 9 | 8 | oveq2d | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS ( 1 + 1 ) ) = ( 𝑆 repeatS 2 ) ) |
| 10 | 4 6 9 | 3eqtr3d | ⊢ ( 𝑆 ∈ 𝑉 → ( 〈“ 𝑆 ”〉 ++ 〈“ 𝑆 ”〉 ) = ( 𝑆 repeatS 2 ) ) |
| 11 | 1 10 | eqtr2id | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 2 ) = 〈“ 𝑆 𝑆 ”〉 ) |