This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "repeated symbol word" of length 1. (Contributed by AV, 4-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repsw1 | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 1 ) = 〈“ 𝑆 ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 2 | repsconst | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 1 ∈ ℕ0 ) → ( 𝑆 repeatS 1 ) = ( ( 0 ..^ 1 ) × { 𝑆 } ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 1 ) = ( ( 0 ..^ 1 ) × { 𝑆 } ) ) |
| 4 | fzo01 | ⊢ ( 0 ..^ 1 ) = { 0 } | |
| 5 | 4 | a1i | ⊢ ( 𝑆 ∈ 𝑉 → ( 0 ..^ 1 ) = { 0 } ) |
| 6 | 5 | xpeq1d | ⊢ ( 𝑆 ∈ 𝑉 → ( ( 0 ..^ 1 ) × { 𝑆 } ) = ( { 0 } × { 𝑆 } ) ) |
| 7 | c0ex | ⊢ 0 ∈ V | |
| 8 | xpsng | ⊢ ( ( 0 ∈ V ∧ 𝑆 ∈ 𝑉 ) → ( { 0 } × { 𝑆 } ) = { 〈 0 , 𝑆 〉 } ) | |
| 9 | 7 8 | mpan | ⊢ ( 𝑆 ∈ 𝑉 → ( { 0 } × { 𝑆 } ) = { 〈 0 , 𝑆 〉 } ) |
| 10 | 3 6 9 | 3eqtrd | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 1 ) = { 〈 0 , 𝑆 〉 } ) |
| 11 | s1val | ⊢ ( 𝑆 ∈ 𝑉 → 〈“ 𝑆 ”〉 = { 〈 0 , 𝑆 〉 } ) | |
| 12 | 10 11 | eqtr4d | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 1 ) = 〈“ 𝑆 ”〉 ) |