This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjval | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) ∈ ℝ ∧ ( i · ( 𝐴 − 𝑥 ) ) ∈ ℝ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 + 𝑥 ) = ( 𝐴 + 𝑥 ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 + 𝑥 ) ∈ ℝ ↔ ( 𝐴 + 𝑥 ) ∈ ℝ ) ) |
| 3 | oveq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 − 𝑥 ) = ( 𝐴 − 𝑥 ) ) | |
| 4 | 3 | oveq2d | ⊢ ( 𝑦 = 𝐴 → ( i · ( 𝑦 − 𝑥 ) ) = ( i · ( 𝐴 − 𝑥 ) ) ) |
| 5 | 4 | eleq1d | ⊢ ( 𝑦 = 𝐴 → ( ( i · ( 𝑦 − 𝑥 ) ) ∈ ℝ ↔ ( i · ( 𝐴 − 𝑥 ) ) ∈ ℝ ) ) |
| 6 | 2 5 | anbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑦 + 𝑥 ) ∈ ℝ ∧ ( i · ( 𝑦 − 𝑥 ) ) ∈ ℝ ) ↔ ( ( 𝐴 + 𝑥 ) ∈ ℝ ∧ ( i · ( 𝐴 − 𝑥 ) ) ∈ ℝ ) ) ) |
| 7 | 6 | riotabidv | ⊢ ( 𝑦 = 𝐴 → ( ℩ 𝑥 ∈ ℂ ( ( 𝑦 + 𝑥 ) ∈ ℝ ∧ ( i · ( 𝑦 − 𝑥 ) ) ∈ ℝ ) ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) ∈ ℝ ∧ ( i · ( 𝐴 − 𝑥 ) ) ∈ ℝ ) ) ) |
| 8 | df-cj | ⊢ ∗ = ( 𝑦 ∈ ℂ ↦ ( ℩ 𝑥 ∈ ℂ ( ( 𝑦 + 𝑥 ) ∈ ℝ ∧ ( i · ( 𝑦 − 𝑥 ) ) ∈ ℝ ) ) ) | |
| 9 | riotaex | ⊢ ( ℩ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) ∈ ℝ ∧ ( i · ( 𝐴 − 𝑥 ) ) ∈ ℝ ) ) ∈ V | |
| 10 | 7 8 9 | fvmpt | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) ∈ ℝ ∧ ( i · ( 𝐴 − 𝑥 ) ) ∈ ℝ ) ) ) |