This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the domain quotient of the class of cosets by a restriction. (Contributed by Peter Mazsa, 4-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldmqs1cossres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ≀ ( 𝑅 ↾ 𝐴 ) / ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ≀ ( 𝑅 ↾ 𝐴 ) / ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) | |
| 2 | df-rex | ⊢ ( ∃ 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) | |
| 3 | eldm1cossres2 | ⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ) ) | |
| 4 | 3 | elv | ⊢ ( 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ) |
| 5 | 4 | anbi1i | ⊢ ( ( 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 7 | 2 6 | bitri | ⊢ ( ∃ 𝑥 ∈ dom ≀ ( 𝑅 ↾ 𝐴 ) 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 8 | 1 7 | bitrdi | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ≀ ( 𝑅 ↾ 𝐴 ) / ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) ) |
| 9 | df-rex | ⊢ ( ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) | |
| 10 | 9 | rexbii | ⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 11 | rexcom4 | ⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) | |
| 12 | r19.41v | ⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) | |
| 13 | 12 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 14 | 11 13 | bitri | ⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 15 | 10 14 | bitri | ⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑥 ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |
| 16 | 8 15 | bitr4di | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ≀ ( 𝑅 ↾ 𝐴 ) / ≀ ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑥 ] ≀ ( 𝑅 ↾ 𝐴 ) ) ) |