This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the domain quotient of a relation. (Contributed by Peter Mazsa, 24-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | releldmqs | ⊢ ( 𝐴 ∈ 𝑉 → ( Rel 𝑅 → ( 𝐴 ∈ ( dom 𝑅 / 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑢 ] 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdm | ⊢ ( Rel 𝑅 → ( 𝑅 ↾ dom 𝑅 ) = 𝑅 ) | |
| 2 | 1 | dmqseqd | ⊢ ( Rel 𝑅 → ( dom ( 𝑅 ↾ dom 𝑅 ) / ( 𝑅 ↾ dom 𝑅 ) ) = ( dom 𝑅 / 𝑅 ) ) |
| 3 | 2 | eleq2d | ⊢ ( Rel 𝑅 → ( 𝐴 ∈ ( dom ( 𝑅 ↾ dom 𝑅 ) / ( 𝑅 ↾ dom 𝑅 ) ) ↔ 𝐴 ∈ ( dom 𝑅 / 𝑅 ) ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Rel 𝑅 ) → ( 𝐴 ∈ ( dom ( 𝑅 ↾ dom 𝑅 ) / ( 𝑅 ↾ dom 𝑅 ) ) ↔ 𝐴 ∈ ( dom 𝑅 / 𝑅 ) ) ) |
| 5 | eldmqsres2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ( dom ( 𝑅 ↾ dom 𝑅 ) / ( 𝑅 ↾ dom 𝑅 ) ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑢 ] 𝑅 ) ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Rel 𝑅 ) → ( 𝐴 ∈ ( dom ( 𝑅 ↾ dom 𝑅 ) / ( 𝑅 ↾ dom 𝑅 ) ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑢 ] 𝑅 ) ) |
| 7 | 4 6 | bitr3d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Rel 𝑅 ) → ( 𝐴 ∈ ( dom 𝑅 / 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑢 ] 𝑅 ) ) |
| 8 | 7 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( Rel 𝑅 → ( 𝐴 ∈ ( dom 𝑅 / 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑢 ] 𝑅 ) ) ) |