This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in a restricted domain quotient set. (Contributed by Peter Mazsa, 22-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldmqsres2 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ( 𝑅 ↾ 𝐴 ) / ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑢 ] 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmqsres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ( 𝑅 ↾ 𝐴 ) / ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑢 ∈ 𝐴 ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) ) | |
| 2 | df-rex | ⊢ ( ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑢 ] 𝑅 ↔ ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) | |
| 3 | 19.41v | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ↔ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑢 ] 𝑅 ↔ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) |
| 5 | 4 | rexbii | ⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑢 ] 𝑅 ↔ ∃ 𝑢 ∈ 𝐴 ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) |
| 6 | 1 5 | bitr4di | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ( 𝑅 ↾ 𝐴 ) / ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑢 ∈ 𝐴 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐵 = [ 𝑢 ] 𝑅 ) ) |