This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Necessary and sufficient condition for dom tpos F to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldmtpos | ⊢ ( Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | 1 | eldm | ⊢ ( ∅ ∈ dom 𝐹 ↔ ∃ 𝑦 ∅ 𝐹 𝑦 ) |
| 3 | brtpos0 | ⊢ ( 𝑦 ∈ V → ( ∅ tpos 𝐹 𝑦 ↔ ∅ 𝐹 𝑦 ) ) | |
| 4 | 3 | elv | ⊢ ( ∅ tpos 𝐹 𝑦 ↔ ∅ 𝐹 𝑦 ) |
| 5 | 0nelrel0 | ⊢ ( Rel dom tpos 𝐹 → ¬ ∅ ∈ dom tpos 𝐹 ) | |
| 6 | vex | ⊢ 𝑦 ∈ V | |
| 7 | 1 6 | breldm | ⊢ ( ∅ tpos 𝐹 𝑦 → ∅ ∈ dom tpos 𝐹 ) |
| 8 | 5 7 | nsyl3 | ⊢ ( ∅ tpos 𝐹 𝑦 → ¬ Rel dom tpos 𝐹 ) |
| 9 | 4 8 | sylbir | ⊢ ( ∅ 𝐹 𝑦 → ¬ Rel dom tpos 𝐹 ) |
| 10 | 9 | exlimiv | ⊢ ( ∃ 𝑦 ∅ 𝐹 𝑦 → ¬ Rel dom tpos 𝐹 ) |
| 11 | 2 10 | sylbi | ⊢ ( ∅ ∈ dom 𝐹 → ¬ Rel dom tpos 𝐹 ) |
| 12 | 11 | con2i | ⊢ ( Rel dom tpos 𝐹 → ¬ ∅ ∈ dom 𝐹 ) |
| 13 | vex | ⊢ 𝑥 ∈ V | |
| 14 | 13 | eldm | ⊢ ( 𝑥 ∈ dom tpos 𝐹 ↔ ∃ 𝑦 𝑥 tpos 𝐹 𝑦 ) |
| 15 | relcnv | ⊢ Rel ◡ dom 𝐹 | |
| 16 | df-rel | ⊢ ( Rel ◡ dom 𝐹 ↔ ◡ dom 𝐹 ⊆ ( V × V ) ) | |
| 17 | 15 16 | mpbi | ⊢ ◡ dom 𝐹 ⊆ ( V × V ) |
| 18 | 17 | sseli | ⊢ ( 𝑥 ∈ ◡ dom 𝐹 → 𝑥 ∈ ( V × V ) ) |
| 19 | 18 | a1i | ⊢ ( ( ¬ ∅ ∈ dom 𝐹 ∧ 𝑥 tpos 𝐹 𝑦 ) → ( 𝑥 ∈ ◡ dom 𝐹 → 𝑥 ∈ ( V × V ) ) ) |
| 20 | elsni | ⊢ ( 𝑥 ∈ { ∅ } → 𝑥 = ∅ ) | |
| 21 | 20 | breq1d | ⊢ ( 𝑥 ∈ { ∅ } → ( 𝑥 tpos 𝐹 𝑦 ↔ ∅ tpos 𝐹 𝑦 ) ) |
| 22 | 1 6 | breldm | ⊢ ( ∅ 𝐹 𝑦 → ∅ ∈ dom 𝐹 ) |
| 23 | 22 | pm2.24d | ⊢ ( ∅ 𝐹 𝑦 → ( ¬ ∅ ∈ dom 𝐹 → 𝑥 ∈ ( V × V ) ) ) |
| 24 | 4 23 | sylbi | ⊢ ( ∅ tpos 𝐹 𝑦 → ( ¬ ∅ ∈ dom 𝐹 → 𝑥 ∈ ( V × V ) ) ) |
| 25 | 21 24 | biimtrdi | ⊢ ( 𝑥 ∈ { ∅ } → ( 𝑥 tpos 𝐹 𝑦 → ( ¬ ∅ ∈ dom 𝐹 → 𝑥 ∈ ( V × V ) ) ) ) |
| 26 | 25 | com3l | ⊢ ( 𝑥 tpos 𝐹 𝑦 → ( ¬ ∅ ∈ dom 𝐹 → ( 𝑥 ∈ { ∅ } → 𝑥 ∈ ( V × V ) ) ) ) |
| 27 | 26 | impcom | ⊢ ( ( ¬ ∅ ∈ dom 𝐹 ∧ 𝑥 tpos 𝐹 𝑦 ) → ( 𝑥 ∈ { ∅ } → 𝑥 ∈ ( V × V ) ) ) |
| 28 | brtpos2 | ⊢ ( 𝑦 ∈ V → ( 𝑥 tpos 𝐹 𝑦 ↔ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝑥 } 𝐹 𝑦 ) ) ) | |
| 29 | 6 28 | ax-mp | ⊢ ( 𝑥 tpos 𝐹 𝑦 ↔ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝑥 } 𝐹 𝑦 ) ) |
| 30 | 29 | simplbi | ⊢ ( 𝑥 tpos 𝐹 𝑦 → 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ) |
| 31 | elun | ⊢ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↔ ( 𝑥 ∈ ◡ dom 𝐹 ∨ 𝑥 ∈ { ∅ } ) ) | |
| 32 | 30 31 | sylib | ⊢ ( 𝑥 tpos 𝐹 𝑦 → ( 𝑥 ∈ ◡ dom 𝐹 ∨ 𝑥 ∈ { ∅ } ) ) |
| 33 | 32 | adantl | ⊢ ( ( ¬ ∅ ∈ dom 𝐹 ∧ 𝑥 tpos 𝐹 𝑦 ) → ( 𝑥 ∈ ◡ dom 𝐹 ∨ 𝑥 ∈ { ∅ } ) ) |
| 34 | 19 27 33 | mpjaod | ⊢ ( ( ¬ ∅ ∈ dom 𝐹 ∧ 𝑥 tpos 𝐹 𝑦 ) → 𝑥 ∈ ( V × V ) ) |
| 35 | 34 | ex | ⊢ ( ¬ ∅ ∈ dom 𝐹 → ( 𝑥 tpos 𝐹 𝑦 → 𝑥 ∈ ( V × V ) ) ) |
| 36 | 35 | exlimdv | ⊢ ( ¬ ∅ ∈ dom 𝐹 → ( ∃ 𝑦 𝑥 tpos 𝐹 𝑦 → 𝑥 ∈ ( V × V ) ) ) |
| 37 | 14 36 | biimtrid | ⊢ ( ¬ ∅ ∈ dom 𝐹 → ( 𝑥 ∈ dom tpos 𝐹 → 𝑥 ∈ ( V × V ) ) ) |
| 38 | 37 | ssrdv | ⊢ ( ¬ ∅ ∈ dom 𝐹 → dom tpos 𝐹 ⊆ ( V × V ) ) |
| 39 | df-rel | ⊢ ( Rel dom tpos 𝐹 ↔ dom tpos 𝐹 ⊆ ( V × V ) ) | |
| 40 | 38 39 | sylibr | ⊢ ( ¬ ∅ ∈ dom 𝐹 → Rel dom tpos 𝐹 ) |
| 41 | 12 40 | impbii | ⊢ ( Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹 ) |