This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021) (Revised by BJ, 14-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0nelrel0 | ⊢ ( Rel 𝑅 → ¬ ∅ ∈ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel | ⊢ ( Rel 𝑅 ↔ 𝑅 ⊆ ( V × V ) ) | |
| 2 | 1 | biimpi | ⊢ ( Rel 𝑅 → 𝑅 ⊆ ( V × V ) ) |
| 3 | 0nelxp | ⊢ ¬ ∅ ∈ ( V × V ) | |
| 4 | 3 | a1i | ⊢ ( Rel 𝑅 → ¬ ∅ ∈ ( V × V ) ) |
| 5 | 2 4 | ssneldd | ⊢ ( Rel 𝑅 → ¬ ∅ ∈ 𝑅 ) |