This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: General form of relcnvtr . (Contributed by Peter Mazsa, 17-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relcnvtrg | ⊢ ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( ( 𝑅 ∘ 𝑆 ) ⊆ 𝑇 ↔ ( ◡ 𝑆 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvco | ⊢ ◡ ( 𝑅 ∘ 𝑆 ) = ( ◡ 𝑆 ∘ ◡ 𝑅 ) | |
| 2 | cnvss | ⊢ ( ( 𝑅 ∘ 𝑆 ) ⊆ 𝑇 → ◡ ( 𝑅 ∘ 𝑆 ) ⊆ ◡ 𝑇 ) | |
| 3 | 1 2 | eqsstrrid | ⊢ ( ( 𝑅 ∘ 𝑆 ) ⊆ 𝑇 → ( ◡ 𝑆 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑇 ) |
| 4 | cnvco | ⊢ ◡ ( ◡ 𝑆 ∘ ◡ 𝑅 ) = ( ◡ ◡ 𝑅 ∘ ◡ ◡ 𝑆 ) | |
| 5 | cnvss | ⊢ ( ( ◡ 𝑆 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑇 → ◡ ( ◡ 𝑆 ∘ ◡ 𝑅 ) ⊆ ◡ ◡ 𝑇 ) | |
| 6 | sseq1 | ⊢ ( ◡ ( ◡ 𝑆 ∘ ◡ 𝑅 ) = ( ◡ ◡ 𝑅 ∘ ◡ ◡ 𝑆 ) → ( ◡ ( ◡ 𝑆 ∘ ◡ 𝑅 ) ⊆ ◡ ◡ 𝑇 ↔ ( ◡ ◡ 𝑅 ∘ ◡ ◡ 𝑆 ) ⊆ ◡ ◡ 𝑇 ) ) | |
| 7 | dfrel2 | ⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) | |
| 8 | 7 | biimpi | ⊢ ( Rel 𝑅 → ◡ ◡ 𝑅 = 𝑅 ) |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ◡ ◡ 𝑅 = 𝑅 ) |
| 10 | dfrel2 | ⊢ ( Rel 𝑆 ↔ ◡ ◡ 𝑆 = 𝑆 ) | |
| 11 | 10 | biimpi | ⊢ ( Rel 𝑆 → ◡ ◡ 𝑆 = 𝑆 ) |
| 12 | 11 | 3ad2ant2 | ⊢ ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ◡ ◡ 𝑆 = 𝑆 ) |
| 13 | 9 12 | coeq12d | ⊢ ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( ◡ ◡ 𝑅 ∘ ◡ ◡ 𝑆 ) = ( 𝑅 ∘ 𝑆 ) ) |
| 14 | dfrel2 | ⊢ ( Rel 𝑇 ↔ ◡ ◡ 𝑇 = 𝑇 ) | |
| 15 | 14 | biimpi | ⊢ ( Rel 𝑇 → ◡ ◡ 𝑇 = 𝑇 ) |
| 16 | 15 | 3ad2ant3 | ⊢ ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ◡ ◡ 𝑇 = 𝑇 ) |
| 17 | 13 16 | sseq12d | ⊢ ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( ( ◡ ◡ 𝑅 ∘ ◡ ◡ 𝑆 ) ⊆ ◡ ◡ 𝑇 ↔ ( 𝑅 ∘ 𝑆 ) ⊆ 𝑇 ) ) |
| 18 | 17 | biimpcd | ⊢ ( ( ◡ ◡ 𝑅 ∘ ◡ ◡ 𝑆 ) ⊆ ◡ ◡ 𝑇 → ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( 𝑅 ∘ 𝑆 ) ⊆ 𝑇 ) ) |
| 19 | 6 18 | biimtrdi | ⊢ ( ◡ ( ◡ 𝑆 ∘ ◡ 𝑅 ) = ( ◡ ◡ 𝑅 ∘ ◡ ◡ 𝑆 ) → ( ◡ ( ◡ 𝑆 ∘ ◡ 𝑅 ) ⊆ ◡ ◡ 𝑇 → ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( 𝑅 ∘ 𝑆 ) ⊆ 𝑇 ) ) ) |
| 20 | 4 5 19 | mpsyl | ⊢ ( ( ◡ 𝑆 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑇 → ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( 𝑅 ∘ 𝑆 ) ⊆ 𝑇 ) ) |
| 21 | 20 | com12 | ⊢ ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( ( ◡ 𝑆 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑇 → ( 𝑅 ∘ 𝑆 ) ⊆ 𝑇 ) ) |
| 22 | 3 21 | impbid2 | ⊢ ( ( Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇 ) → ( ( 𝑅 ∘ 𝑆 ) ⊆ 𝑇 ↔ ( ◡ 𝑆 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑇 ) ) |