This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: General form of relcnvtr . (Contributed by Peter Mazsa, 17-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relcnvtrg | |- ( ( Rel R /\ Rel S /\ Rel T ) -> ( ( R o. S ) C_ T <-> ( `' S o. `' R ) C_ `' T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvco | |- `' ( R o. S ) = ( `' S o. `' R ) |
|
| 2 | cnvss | |- ( ( R o. S ) C_ T -> `' ( R o. S ) C_ `' T ) |
|
| 3 | 1 2 | eqsstrrid | |- ( ( R o. S ) C_ T -> ( `' S o. `' R ) C_ `' T ) |
| 4 | cnvco | |- `' ( `' S o. `' R ) = ( `' `' R o. `' `' S ) |
|
| 5 | cnvss | |- ( ( `' S o. `' R ) C_ `' T -> `' ( `' S o. `' R ) C_ `' `' T ) |
|
| 6 | sseq1 | |- ( `' ( `' S o. `' R ) = ( `' `' R o. `' `' S ) -> ( `' ( `' S o. `' R ) C_ `' `' T <-> ( `' `' R o. `' `' S ) C_ `' `' T ) ) |
|
| 7 | dfrel2 | |- ( Rel R <-> `' `' R = R ) |
|
| 8 | 7 | biimpi | |- ( Rel R -> `' `' R = R ) |
| 9 | 8 | 3ad2ant1 | |- ( ( Rel R /\ Rel S /\ Rel T ) -> `' `' R = R ) |
| 10 | dfrel2 | |- ( Rel S <-> `' `' S = S ) |
|
| 11 | 10 | biimpi | |- ( Rel S -> `' `' S = S ) |
| 12 | 11 | 3ad2ant2 | |- ( ( Rel R /\ Rel S /\ Rel T ) -> `' `' S = S ) |
| 13 | 9 12 | coeq12d | |- ( ( Rel R /\ Rel S /\ Rel T ) -> ( `' `' R o. `' `' S ) = ( R o. S ) ) |
| 14 | dfrel2 | |- ( Rel T <-> `' `' T = T ) |
|
| 15 | 14 | biimpi | |- ( Rel T -> `' `' T = T ) |
| 16 | 15 | 3ad2ant3 | |- ( ( Rel R /\ Rel S /\ Rel T ) -> `' `' T = T ) |
| 17 | 13 16 | sseq12d | |- ( ( Rel R /\ Rel S /\ Rel T ) -> ( ( `' `' R o. `' `' S ) C_ `' `' T <-> ( R o. S ) C_ T ) ) |
| 18 | 17 | biimpcd | |- ( ( `' `' R o. `' `' S ) C_ `' `' T -> ( ( Rel R /\ Rel S /\ Rel T ) -> ( R o. S ) C_ T ) ) |
| 19 | 6 18 | biimtrdi | |- ( `' ( `' S o. `' R ) = ( `' `' R o. `' `' S ) -> ( `' ( `' S o. `' R ) C_ `' `' T -> ( ( Rel R /\ Rel S /\ Rel T ) -> ( R o. S ) C_ T ) ) ) |
| 20 | 4 5 19 | mpsyl | |- ( ( `' S o. `' R ) C_ `' T -> ( ( Rel R /\ Rel S /\ Rel T ) -> ( R o. S ) C_ T ) ) |
| 21 | 20 | com12 | |- ( ( Rel R /\ Rel S /\ Rel T ) -> ( ( `' S o. `' R ) C_ `' T -> ( R o. S ) C_ T ) ) |
| 22 | 3 21 | impbid2 | |- ( ( Rel R /\ Rel S /\ Rel T ) -> ( ( R o. S ) C_ T <-> ( `' S o. `' R ) C_ `' T ) ) |