This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011) (Proof shortened by Peter Mazsa, 17-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relcnvtr | ⊢ ( Rel 𝑅 → ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ↔ ( ◡ 𝑅 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anidm | ⊢ ( ( Rel 𝑅 ∧ Rel 𝑅 ∧ Rel 𝑅 ) ↔ Rel 𝑅 ) | |
| 2 | relcnvtrg | ⊢ ( ( Rel 𝑅 ∧ Rel 𝑅 ∧ Rel 𝑅 ) → ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ↔ ( ◡ 𝑅 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑅 ) ) | |
| 3 | 1 2 | sylbir | ⊢ ( Rel 𝑅 → ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ↔ ( ◡ 𝑅 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑅 ) ) |