This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrefrel2 | ⊢ ( RefRel 𝑅 ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-refrel | ⊢ ( RefRel 𝑅 ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) ) | |
| 2 | dfrel6 | ⊢ ( Rel 𝑅 ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 ) | |
| 3 | 2 | biimpi | ⊢ ( Rel 𝑅 → ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 ) |
| 4 | 3 | sseq2d | ⊢ ( Rel 𝑅 → ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ↔ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ) ) |
| 5 | 4 | pm5.32ri | ⊢ ( ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) |
| 6 | 1 5 | bitri | ⊢ ( RefRel 𝑅 ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) |