This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relation which is reflexive and symmetric (like an equivalence relation) can use the A. x e. dom R x R x version for its reflexive part, not just the A. x e. dom R A. y e. ran R ( x = y -> x R y ) version of dfrefrel3 , cf. the comment of dfrefrel3 . (Contributed by Peter Mazsa, 23-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refsymrel3 | ⊢ ( ( RefRel 𝑅 ∧ SymRel 𝑅 ) ↔ ( ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ∧ Rel 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrefrel3 | ⊢ ( RefRel 𝑅 ↔ ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ∧ Rel 𝑅 ) ) | |
| 2 | dfsymrel3 | ⊢ ( SymRel 𝑅 ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ Rel 𝑅 ) ) | |
| 3 | 1 2 | anbi12i | ⊢ ( ( RefRel 𝑅 ∧ SymRel 𝑅 ) ↔ ( ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ∧ Rel 𝑅 ) ∧ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ Rel 𝑅 ) ) ) |
| 4 | anandi3r | ⊢ ( ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ∧ Rel 𝑅 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ↔ ( ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ∧ Rel 𝑅 ) ∧ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ Rel 𝑅 ) ) ) | |
| 5 | 3anan32 | ⊢ ( ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ∧ Rel 𝑅 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ↔ ( ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ∧ Rel 𝑅 ) ) | |
| 6 | 3 4 5 | 3bitr2i | ⊢ ( ( RefRel 𝑅 ∧ SymRel 𝑅 ) ↔ ( ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ∧ Rel 𝑅 ) ) |
| 7 | symrefref3 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) → ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ↔ ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ) ) | |
| 8 | 7 | pm5.32ri | ⊢ ( ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ↔ ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| 9 | 8 | anbi1i | ⊢ ( ( ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ∧ Rel 𝑅 ) ↔ ( ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ∧ Rel 𝑅 ) ) |
| 10 | 6 9 | bitri | ⊢ ( ( RefRel 𝑅 ∧ SymRel 𝑅 ) ↔ ( ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ∧ Rel 𝑅 ) ) |