This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma factoring out common proof steps of reeanv and reean . (Contributed by Wolf Lammen, 20-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | reeanlem.1 | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) | |
| Assertion | reeanlem | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reeanlem.1 | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) | |
| 2 | an4 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) | |
| 3 | 2 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 4 | 3 1 | bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 5 | r2ex | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) | |
| 6 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 7 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝜓 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) | |
| 8 | 6 7 | anbi12i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 9 | 4 5 8 | 3bitr4i | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |