This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrange restricted existential quantifiers. For a version based on fewer axioms see reeanv . (Contributed by NM, 27-Oct-2010) (Proof shortened by Andrew Salmon, 30-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reean.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| reean.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| Assertion | reean | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reean.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | reean.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | nfv | ⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 | |
| 4 | 3 1 | nfan | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) |
| 5 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵 | |
| 6 | 5 2 | nfan | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) |
| 7 | 4 6 | eean | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 8 | 7 | reeanlem | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |