This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication maps nonzero complex numbers to nonzero complex numbers. (Contributed by Steve Rodriguez, 23-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulnzcnf | ⊢ ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) : ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ⟶ ( ℂ ∖ { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulf | ⊢ · : ( ℂ × ℂ ) ⟶ ℂ | |
| 2 | ffnov | ⊢ ( · : ( ℂ × ℂ ) ⟶ ℂ ↔ ( · Fn ( ℂ × ℂ ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( 𝑥 · 𝑦 ) ∈ ℂ ) ) | |
| 3 | 1 2 | mpbi | ⊢ ( · Fn ( ℂ × ℂ ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 4 | 3 | simpli | ⊢ · Fn ( ℂ × ℂ ) |
| 5 | difss | ⊢ ( ℂ ∖ { 0 } ) ⊆ ℂ | |
| 6 | xpss12 | ⊢ ( ( ( ℂ ∖ { 0 } ) ⊆ ℂ ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ) → ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ⊆ ( ℂ × ℂ ) ) | |
| 7 | 5 5 6 | mp2an | ⊢ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ⊆ ( ℂ × ℂ ) |
| 8 | fnssres | ⊢ ( ( · Fn ( ℂ × ℂ ) ∧ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ⊆ ( ℂ × ℂ ) ) → ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) Fn ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) | |
| 9 | 4 7 8 | mp2an | ⊢ ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) Fn ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) |
| 10 | ovres | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) | |
| 11 | eldifsn | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) | |
| 12 | eldifsn | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) | |
| 13 | mulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) | |
| 14 | 13 | ad2ant2r | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 15 | mulne0 | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) | |
| 16 | 14 15 | jca | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( ( 𝑥 · 𝑦 ) ∈ ℂ ∧ ( 𝑥 · 𝑦 ) ≠ 0 ) ) |
| 17 | 11 12 16 | syl2anb | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑥 · 𝑦 ) ∈ ℂ ∧ ( 𝑥 · 𝑦 ) ≠ 0 ) ) |
| 18 | eldifsn | ⊢ ( ( 𝑥 · 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑥 · 𝑦 ) ∈ ℂ ∧ ( 𝑥 · 𝑦 ) ≠ 0 ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 20 | 10 19 | eqeltrd | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 21 | 20 | rgen2 | ⊢ ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( 𝑥 ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) ∈ ( ℂ ∖ { 0 } ) |
| 22 | ffnov | ⊢ ( ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) : ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ⟶ ( ℂ ∖ { 0 } ) ↔ ( ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) Fn ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ∧ ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( 𝑥 ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) ) | |
| 23 | 9 21 22 | mpbir2an | ⊢ ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) : ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ⟶ ( ℂ ∖ { 0 } ) |