This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The initial segments of the recursive definition generator are sets. (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdgseg | ⊢ ( 𝐵 ∈ dom rec ( 𝐹 , 𝐴 ) → ( rec ( 𝐹 , 𝐴 ) ↾ 𝐵 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rdg | ⊢ rec ( 𝐹 , 𝐴 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) | |
| 2 | 1 | reseq1i | ⊢ ( rec ( 𝐹 , 𝐴 ) ↾ 𝐵 ) = ( recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) ↾ 𝐵 ) |
| 3 | rdglem1 | ⊢ { 𝑤 ∣ ∃ 𝑦 ∈ On ( 𝑤 Fn 𝑦 ∧ ∀ 𝑣 ∈ 𝑦 ( 𝑤 ‘ 𝑣 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑤 ↾ 𝑣 ) ) ) } = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) ) } | |
| 4 | 3 | tfrlem9a | ⊢ ( 𝐵 ∈ dom recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) → ( recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) ↾ 𝐵 ) ∈ V ) |
| 5 | 1 | dmeqi | ⊢ dom rec ( 𝐹 , 𝐴 ) = dom recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) |
| 6 | 4 5 | eleq2s | ⊢ ( 𝐵 ∈ dom rec ( 𝐹 , 𝐴 ) → ( recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) ↾ 𝐵 ) ∈ V ) |
| 7 | 2 6 | eqeltrid | ⊢ ( 𝐵 ∈ dom rec ( 𝐹 , 𝐴 ) → ( rec ( 𝐹 , 𝐴 ) ↾ 𝐵 ) ∈ V ) |