This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two subclasses are equal if and only if their relative complements are equal. Relativized version of compleq . (Contributed by RP, 10-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rcompleq | |- ( ( A C_ C /\ B C_ C ) -> ( A = B <-> ( C \ A ) = ( C \ B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom | |- ( ( A C_ B /\ B C_ A ) <-> ( B C_ A /\ A C_ B ) ) |
|
| 2 | sscon34b | |- ( ( B C_ C /\ A C_ C ) -> ( B C_ A <-> ( C \ A ) C_ ( C \ B ) ) ) |
|
| 3 | 2 | ancoms | |- ( ( A C_ C /\ B C_ C ) -> ( B C_ A <-> ( C \ A ) C_ ( C \ B ) ) ) |
| 4 | sscon34b | |- ( ( A C_ C /\ B C_ C ) -> ( A C_ B <-> ( C \ B ) C_ ( C \ A ) ) ) |
|
| 5 | 3 4 | anbi12d | |- ( ( A C_ C /\ B C_ C ) -> ( ( B C_ A /\ A C_ B ) <-> ( ( C \ A ) C_ ( C \ B ) /\ ( C \ B ) C_ ( C \ A ) ) ) ) |
| 6 | 1 5 | bitrid | |- ( ( A C_ C /\ B C_ C ) -> ( ( A C_ B /\ B C_ A ) <-> ( ( C \ A ) C_ ( C \ B ) /\ ( C \ B ) C_ ( C \ A ) ) ) ) |
| 7 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
| 8 | eqss | |- ( ( C \ A ) = ( C \ B ) <-> ( ( C \ A ) C_ ( C \ B ) /\ ( C \ B ) C_ ( C \ A ) ) ) |
|
| 9 | 6 7 8 | 3bitr4g | |- ( ( A C_ C /\ B C_ C ) -> ( A = B <-> ( C \ A ) = ( C \ B ) ) ) |