This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the symmetric difference, given in Example 4.1 of Stoll p. 262 (the original definition corresponds to Stoll p. 13). (Contributed by NM, 17-Aug-2004) (Revised by BJ, 30-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsymdif3 | ⊢ ( 𝐴 △ 𝐵 ) = ( ( 𝐴 ∪ 𝐵 ) ∖ ( 𝐴 ∩ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difin | ⊢ ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) | |
| 2 | incom | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) | |
| 3 | 2 | difeq2i | ⊢ ( 𝐵 ∖ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐵 ∖ ( 𝐵 ∩ 𝐴 ) ) |
| 4 | difin | ⊢ ( 𝐵 ∖ ( 𝐵 ∩ 𝐴 ) ) = ( 𝐵 ∖ 𝐴 ) | |
| 5 | 3 4 | eqtri | ⊢ ( 𝐵 ∖ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐵 ∖ 𝐴 ) |
| 6 | 1 5 | uneq12i | ⊢ ( ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐵 ∖ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) |
| 7 | difundir | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∖ ( 𝐴 ∩ 𝐵 ) ) = ( ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐵 ∖ ( 𝐴 ∩ 𝐵 ) ) ) | |
| 8 | df-symdif | ⊢ ( 𝐴 △ 𝐵 ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) | |
| 9 | 6 7 8 | 3eqtr4ri | ⊢ ( 𝐴 △ 𝐵 ) = ( ( 𝐴 ∪ 𝐵 ) ∖ ( 𝐴 ∩ 𝐵 ) ) |