This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of a set belongs to a limit ordinal iff the rank of its power set does. (Contributed by NM, 18-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ranklim | ⊢ ( Lim 𝐵 → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsuc | ⊢ ( Lim 𝐵 → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐵 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 3 | pweq | ⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) | |
| 4 | 3 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( rank ‘ 𝒫 𝑥 ) = ( rank ‘ 𝒫 𝐴 ) ) |
| 5 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) ) | |
| 6 | suceq | ⊢ ( ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) → suc ( rank ‘ 𝑥 ) = suc ( rank ‘ 𝐴 ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑥 = 𝐴 → suc ( rank ‘ 𝑥 ) = suc ( rank ‘ 𝐴 ) ) |
| 8 | 4 7 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( rank ‘ 𝒫 𝑥 ) = suc ( rank ‘ 𝑥 ) ↔ ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 ) ) ) |
| 9 | vex | ⊢ 𝑥 ∈ V | |
| 10 | 9 | rankpw | ⊢ ( rank ‘ 𝒫 𝑥 ) = suc ( rank ‘ 𝑥 ) |
| 11 | 8 10 | vtoclg | ⊢ ( 𝐴 ∈ V → ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 ) ) |
| 12 | 11 | eleq1d | ⊢ ( 𝐴 ∈ V → ( ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐵 ) → ( ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 14 | 2 13 | bitr4d | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐵 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) ) |
| 15 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( rank ‘ 𝐴 ) = ∅ ) | |
| 16 | pwexb | ⊢ ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V ) | |
| 17 | fvprc | ⊢ ( ¬ 𝒫 𝐴 ∈ V → ( rank ‘ 𝒫 𝐴 ) = ∅ ) | |
| 18 | 16 17 | sylnbi | ⊢ ( ¬ 𝐴 ∈ V → ( rank ‘ 𝒫 𝐴 ) = ∅ ) |
| 19 | 15 18 | eqtr4d | ⊢ ( ¬ 𝐴 ∈ V → ( rank ‘ 𝐴 ) = ( rank ‘ 𝒫 𝐴 ) ) |
| 20 | 19 | eleq1d | ⊢ ( ¬ 𝐴 ∈ V → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) ) |
| 21 | 20 | adantr | ⊢ ( ( ¬ 𝐴 ∈ V ∧ Lim 𝐵 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) ) |
| 22 | 14 21 | pm2.61ian | ⊢ ( Lim 𝐵 → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) ) |