This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of a set belongs to a limit ordinal iff the rank of its power set does. (Contributed by NM, 18-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ranklim | |- ( Lim B -> ( ( rank ` A ) e. B <-> ( rank ` ~P A ) e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsuc | |- ( Lim B -> ( ( rank ` A ) e. B <-> suc ( rank ` A ) e. B ) ) |
|
| 2 | 1 | adantl | |- ( ( A e. _V /\ Lim B ) -> ( ( rank ` A ) e. B <-> suc ( rank ` A ) e. B ) ) |
| 3 | pweq | |- ( x = A -> ~P x = ~P A ) |
|
| 4 | 3 | fveq2d | |- ( x = A -> ( rank ` ~P x ) = ( rank ` ~P A ) ) |
| 5 | fveq2 | |- ( x = A -> ( rank ` x ) = ( rank ` A ) ) |
|
| 6 | suceq | |- ( ( rank ` x ) = ( rank ` A ) -> suc ( rank ` x ) = suc ( rank ` A ) ) |
|
| 7 | 5 6 | syl | |- ( x = A -> suc ( rank ` x ) = suc ( rank ` A ) ) |
| 8 | 4 7 | eqeq12d | |- ( x = A -> ( ( rank ` ~P x ) = suc ( rank ` x ) <-> ( rank ` ~P A ) = suc ( rank ` A ) ) ) |
| 9 | vex | |- x e. _V |
|
| 10 | 9 | rankpw | |- ( rank ` ~P x ) = suc ( rank ` x ) |
| 11 | 8 10 | vtoclg | |- ( A e. _V -> ( rank ` ~P A ) = suc ( rank ` A ) ) |
| 12 | 11 | eleq1d | |- ( A e. _V -> ( ( rank ` ~P A ) e. B <-> suc ( rank ` A ) e. B ) ) |
| 13 | 12 | adantr | |- ( ( A e. _V /\ Lim B ) -> ( ( rank ` ~P A ) e. B <-> suc ( rank ` A ) e. B ) ) |
| 14 | 2 13 | bitr4d | |- ( ( A e. _V /\ Lim B ) -> ( ( rank ` A ) e. B <-> ( rank ` ~P A ) e. B ) ) |
| 15 | fvprc | |- ( -. A e. _V -> ( rank ` A ) = (/) ) |
|
| 16 | pwexb | |- ( A e. _V <-> ~P A e. _V ) |
|
| 17 | fvprc | |- ( -. ~P A e. _V -> ( rank ` ~P A ) = (/) ) |
|
| 18 | 16 17 | sylnbi | |- ( -. A e. _V -> ( rank ` ~P A ) = (/) ) |
| 19 | 15 18 | eqtr4d | |- ( -. A e. _V -> ( rank ` A ) = ( rank ` ~P A ) ) |
| 20 | 19 | eleq1d | |- ( -. A e. _V -> ( ( rank ` A ) e. B <-> ( rank ` ~P A ) e. B ) ) |
| 21 | 20 | adantr | |- ( ( -. A e. _V /\ Lim B ) -> ( ( rank ` A ) e. B <-> ( rank ` ~P A ) e. B ) ) |
| 22 | 14 21 | pm2.61ian | |- ( Lim B -> ( ( rank ` A ) e. B <-> ( rank ` ~P A ) e. B ) ) |