This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of ralxfr which does not use ralxfrd . (Contributed by NM, 10-Jun-2005) (Revised by Mario Carneiro, 15-Aug-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralxfr.1 | ⊢ ( 𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵 ) | |
| ralxfr.2 | ⊢ ( 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | ||
| ralxfr.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | ralxfrALT | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐶 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxfr.1 | ⊢ ( 𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵 ) | |
| 2 | ralxfr.2 | ⊢ ( 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | |
| 3 | ralxfr.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 3 | rspcv | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → 𝜓 ) ) |
| 5 | 1 4 | syl | ⊢ ( 𝑦 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → 𝜓 ) ) |
| 6 | 5 | com12 | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜑 → ( 𝑦 ∈ 𝐶 → 𝜓 ) ) |
| 7 | 6 | ralrimiv | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜑 → ∀ 𝑦 ∈ 𝐶 𝜓 ) |
| 8 | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐶 𝜓 | |
| 9 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 10 | rsp | ⊢ ( ∀ 𝑦 ∈ 𝐶 𝜓 → ( 𝑦 ∈ 𝐶 → 𝜓 ) ) | |
| 11 | 3 | biimprcd | ⊢ ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) |
| 12 | 10 11 | syl6 | ⊢ ( ∀ 𝑦 ∈ 𝐶 𝜓 → ( 𝑦 ∈ 𝐶 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 13 | 8 9 12 | rexlimd | ⊢ ( ∀ 𝑦 ∈ 𝐶 𝜓 → ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝜑 ) ) |
| 14 | 2 13 | syl5 | ⊢ ( ∀ 𝑦 ∈ 𝐶 𝜓 → ( 𝑥 ∈ 𝐵 → 𝜑 ) ) |
| 15 | 14 | ralrimiv | ⊢ ( ∀ 𝑦 ∈ 𝐶 𝜓 → ∀ 𝑥 ∈ 𝐵 𝜑 ) |
| 16 | 7 15 | impbii | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐶 𝜓 ) |