This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of ralxfr which does not use ralxfrd . (Contributed by NM, 10-Jun-2005) (Revised by Mario Carneiro, 15-Aug-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralxfr.1 | |- ( y e. C -> A e. B ) |
|
| ralxfr.2 | |- ( x e. B -> E. y e. C x = A ) |
||
| ralxfr.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
| Assertion | ralxfrALT | |- ( A. x e. B ph <-> A. y e. C ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxfr.1 | |- ( y e. C -> A e. B ) |
|
| 2 | ralxfr.2 | |- ( x e. B -> E. y e. C x = A ) |
|
| 3 | ralxfr.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 4 | 3 | rspcv | |- ( A e. B -> ( A. x e. B ph -> ps ) ) |
| 5 | 1 4 | syl | |- ( y e. C -> ( A. x e. B ph -> ps ) ) |
| 6 | 5 | com12 | |- ( A. x e. B ph -> ( y e. C -> ps ) ) |
| 7 | 6 | ralrimiv | |- ( A. x e. B ph -> A. y e. C ps ) |
| 8 | nfra1 | |- F/ y A. y e. C ps |
|
| 9 | nfv | |- F/ y ph |
|
| 10 | rsp | |- ( A. y e. C ps -> ( y e. C -> ps ) ) |
|
| 11 | 3 | biimprcd | |- ( ps -> ( x = A -> ph ) ) |
| 12 | 10 11 | syl6 | |- ( A. y e. C ps -> ( y e. C -> ( x = A -> ph ) ) ) |
| 13 | 8 9 12 | rexlimd | |- ( A. y e. C ps -> ( E. y e. C x = A -> ph ) ) |
| 14 | 2 13 | syl5 | |- ( A. y e. C ps -> ( x e. B -> ph ) ) |
| 15 | 14 | ralrimiv | |- ( A. y e. C ps -> A. x e. B ph ) |
| 16 | 7 15 | impbii | |- ( A. x e. B ph <-> A. y e. C ps ) |