This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert a universal quantification over an unordered triple to a conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralprd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| ralprd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( 𝜓 ↔ 𝜃 ) ) | ||
| raltpd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → ( 𝜓 ↔ 𝜏 ) ) | ||
| ralprd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| ralprd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| raltpd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| Assertion | raltpd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜓 ↔ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralprd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | ralprd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( 𝜓 ↔ 𝜃 ) ) | |
| 3 | raltpd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐶 ) → ( 𝜓 ↔ 𝜏 ) ) | |
| 4 | ralprd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | ralprd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 6 | raltpd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 7 | an3andi | ⊢ ( ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜑 ∧ 𝜏 ) ) ) | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → ( ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜑 ∧ 𝜏 ) ) ) ) |
| 9 | 1 | expcom | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ) |
| 10 | 9 | pm5.32d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜒 ) ) ) |
| 11 | 2 | expcom | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 → ( 𝜓 ↔ 𝜃 ) ) ) |
| 12 | 11 | pm5.32d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜃 ) ) ) |
| 13 | 3 | expcom | ⊢ ( 𝑥 = 𝐶 → ( 𝜑 → ( 𝜓 ↔ 𝜏 ) ) ) |
| 14 | 13 | pm5.32d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜏 ) ) ) |
| 15 | 10 12 14 | raltpg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ( 𝜑 ∧ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜑 ∧ 𝜏 ) ) ) ) |
| 16 | 4 5 6 15 | syl3anc | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ( 𝜑 ∧ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜑 ∧ 𝜏 ) ) ) ) |
| 17 | 4 | tpnzd | ⊢ ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ ) |
| 18 | r19.28zv | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜓 ) ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜓 ) ) ) |
| 20 | 8 16 19 | 3bitr2d | ⊢ ( 𝜑 → ( ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ↔ ( 𝜑 ∧ ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜓 ) ) ) |
| 21 | 20 | bianabs | ⊢ ( 𝜑 → ( ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ↔ ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜓 ) ) |
| 22 | 21 | bicomd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜓 ↔ ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) ) |
| 23 | 22 | bianabs | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜓 ↔ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) |