This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert a universal quantification over an unordered triple to a conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralprd.1 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
|
| ralprd.2 | |- ( ( ph /\ x = B ) -> ( ps <-> th ) ) |
||
| raltpd.3 | |- ( ( ph /\ x = C ) -> ( ps <-> ta ) ) |
||
| ralprd.a | |- ( ph -> A e. V ) |
||
| ralprd.b | |- ( ph -> B e. W ) |
||
| raltpd.c | |- ( ph -> C e. X ) |
||
| Assertion | raltpd | |- ( ph -> ( A. x e. { A , B , C } ps <-> ( ch /\ th /\ ta ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralprd.1 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
|
| 2 | ralprd.2 | |- ( ( ph /\ x = B ) -> ( ps <-> th ) ) |
|
| 3 | raltpd.3 | |- ( ( ph /\ x = C ) -> ( ps <-> ta ) ) |
|
| 4 | ralprd.a | |- ( ph -> A e. V ) |
|
| 5 | ralprd.b | |- ( ph -> B e. W ) |
|
| 6 | raltpd.c | |- ( ph -> C e. X ) |
|
| 7 | an3andi | |- ( ( ph /\ ( ch /\ th /\ ta ) ) <-> ( ( ph /\ ch ) /\ ( ph /\ th ) /\ ( ph /\ ta ) ) ) |
|
| 8 | 7 | a1i | |- ( ph -> ( ( ph /\ ( ch /\ th /\ ta ) ) <-> ( ( ph /\ ch ) /\ ( ph /\ th ) /\ ( ph /\ ta ) ) ) ) |
| 9 | 1 | expcom | |- ( x = A -> ( ph -> ( ps <-> ch ) ) ) |
| 10 | 9 | pm5.32d | |- ( x = A -> ( ( ph /\ ps ) <-> ( ph /\ ch ) ) ) |
| 11 | 2 | expcom | |- ( x = B -> ( ph -> ( ps <-> th ) ) ) |
| 12 | 11 | pm5.32d | |- ( x = B -> ( ( ph /\ ps ) <-> ( ph /\ th ) ) ) |
| 13 | 3 | expcom | |- ( x = C -> ( ph -> ( ps <-> ta ) ) ) |
| 14 | 13 | pm5.32d | |- ( x = C -> ( ( ph /\ ps ) <-> ( ph /\ ta ) ) ) |
| 15 | 10 12 14 | raltpg | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A. x e. { A , B , C } ( ph /\ ps ) <-> ( ( ph /\ ch ) /\ ( ph /\ th ) /\ ( ph /\ ta ) ) ) ) |
| 16 | 4 5 6 15 | syl3anc | |- ( ph -> ( A. x e. { A , B , C } ( ph /\ ps ) <-> ( ( ph /\ ch ) /\ ( ph /\ th ) /\ ( ph /\ ta ) ) ) ) |
| 17 | 4 | tpnzd | |- ( ph -> { A , B , C } =/= (/) ) |
| 18 | r19.28zv | |- ( { A , B , C } =/= (/) -> ( A. x e. { A , B , C } ( ph /\ ps ) <-> ( ph /\ A. x e. { A , B , C } ps ) ) ) |
|
| 19 | 17 18 | syl | |- ( ph -> ( A. x e. { A , B , C } ( ph /\ ps ) <-> ( ph /\ A. x e. { A , B , C } ps ) ) ) |
| 20 | 8 16 19 | 3bitr2d | |- ( ph -> ( ( ph /\ ( ch /\ th /\ ta ) ) <-> ( ph /\ A. x e. { A , B , C } ps ) ) ) |
| 21 | 20 | bianabs | |- ( ph -> ( ( ph /\ ( ch /\ th /\ ta ) ) <-> A. x e. { A , B , C } ps ) ) |
| 22 | 21 | bicomd | |- ( ph -> ( A. x e. { A , B , C } ps <-> ( ph /\ ( ch /\ th /\ ta ) ) ) ) |
| 23 | 22 | bianabs | |- ( ph -> ( A. x e. { A , B , C } ps <-> ( ch /\ th /\ ta ) ) ) |