This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of the inclusion of a singleton in a class. (Contributed by BJ, 1-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snssb | ⊢ ( { 𝐴 } ⊆ 𝐵 ↔ ( 𝐴 ∈ V → 𝐴 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | ⊢ ( { 𝐴 } ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ) | |
| 2 | velsn | ⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) | |
| 3 | 2 | imbi1i | ⊢ ( ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 4 | 3 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 5 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 6 | 5 | pm5.74i | ⊢ ( ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ) |
| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ) |
| 8 | 19.23v | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ) | |
| 9 | isset | ⊢ ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) | |
| 10 | 9 | bicomi | ⊢ ( ∃ 𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ V ) |
| 11 | 10 | imbi1i | ⊢ ( ( ∃ 𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ↔ ( 𝐴 ∈ V → 𝐴 ∈ 𝐵 ) ) |
| 12 | 7 8 11 | 3bitri | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ( 𝐴 ∈ V → 𝐴 ∈ 𝐵 ) ) |
| 13 | 1 4 12 | 3bitri | ⊢ ( { 𝐴 } ⊆ 𝐵 ↔ ( 𝐴 ∈ V → 𝐴 ∈ 𝐵 ) ) |