This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of conjunction over threefold conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | an3andi | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜑 ∧ 𝜃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandi | ⊢ ( ( 𝜑 ∧ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ∧ ( 𝜑 ∧ 𝜃 ) ) ) | |
| 2 | anandi | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ) ) | |
| 3 | 1 2 | bianbi | ⊢ ( ( 𝜑 ∧ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ) ∧ ( 𝜑 ∧ 𝜃 ) ) ) |
| 4 | df-3an | ⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) | |
| 5 | 4 | anbi2i | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) ↔ ( 𝜑 ∧ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) ) |
| 6 | df-3an | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜑 ∧ 𝜃 ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ) ∧ ( 𝜑 ∧ 𝜃 ) ) ) | |
| 7 | 3 5 6 | 3bitr4i | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜑 ∧ 𝜃 ) ) ) |