This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted quantifier over an image set. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker ralrnmptw when possible. (Contributed by Mario Carneiro, 20-Aug-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralrnmpt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| ralrnmpt.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | ralrnmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrnmpt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 2 | ralrnmpt.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 1 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴 ) |
| 4 | dfsbcq | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑧 ) → ( [ 𝑤 / 𝑦 ] 𝜓 ↔ [ ( 𝐹 ‘ 𝑧 ) / 𝑦 ] 𝜓 ) ) | |
| 5 | 4 | ralrn | ⊢ ( 𝐹 Fn 𝐴 → ( ∀ 𝑤 ∈ ran 𝐹 [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑧 ∈ 𝐴 [ ( 𝐹 ‘ 𝑧 ) / 𝑦 ] 𝜓 ) ) |
| 6 | 3 5 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( ∀ 𝑤 ∈ ran 𝐹 [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑧 ∈ 𝐴 [ ( 𝐹 ‘ 𝑧 ) / 𝑦 ] 𝜓 ) ) |
| 7 | nfv | ⊢ Ⅎ 𝑤 𝜓 | |
| 8 | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑤 / 𝑦 ] 𝜓 | |
| 9 | sbceq1a | ⊢ ( 𝑦 = 𝑤 → ( 𝜓 ↔ [ 𝑤 / 𝑦 ] 𝜓 ) ) | |
| 10 | 7 8 9 | cbvral | ⊢ ( ∀ 𝑦 ∈ ran 𝐹 𝜓 ↔ ∀ 𝑤 ∈ ran 𝐹 [ 𝑤 / 𝑦 ] 𝜓 ) |
| 11 | 10 | bicomi | ⊢ ( ∀ 𝑤 ∈ ran 𝐹 [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑦 ∈ ran 𝐹 𝜓 ) |
| 12 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 13 | 1 12 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 14 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 15 | 13 14 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑧 ) |
| 16 | nfv | ⊢ Ⅎ 𝑥 𝜓 | |
| 17 | 15 16 | nfsbc | ⊢ Ⅎ 𝑥 [ ( 𝐹 ‘ 𝑧 ) / 𝑦 ] 𝜓 |
| 18 | nfv | ⊢ Ⅎ 𝑧 [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 | |
| 19 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 20 | 19 | sbceq1d | ⊢ ( 𝑧 = 𝑥 → ( [ ( 𝐹 ‘ 𝑧 ) / 𝑦 ] 𝜓 ↔ [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ) ) |
| 21 | 17 18 20 | cbvral | ⊢ ( ∀ 𝑧 ∈ 𝐴 [ ( 𝐹 ‘ 𝑧 ) / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ) |
| 22 | 6 11 21 | 3bitr3g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ) ) |
| 23 | 1 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
| 24 | 23 | sbceq1d | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ↔ [ 𝐵 / 𝑦 ] 𝜓 ) ) |
| 25 | 2 | sbcieg | ⊢ ( 𝐵 ∈ 𝑉 → ( [ 𝐵 / 𝑦 ] 𝜓 ↔ 𝜒 ) ) |
| 26 | 25 | adantl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( [ 𝐵 / 𝑦 ] 𝜓 ↔ 𝜒 ) ) |
| 27 | 24 26 | bitrd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ↔ 𝜒 ) ) |
| 28 | 27 | ralimiaa | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐴 ( [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ↔ 𝜒 ) ) |
| 29 | ralbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ↔ 𝜒 ) → ( ∀ 𝑥 ∈ 𝐴 [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) | |
| 30 | 28 29 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 [ ( 𝐹 ‘ 𝑥 ) / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
| 31 | 22 30 | bitrd | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |