This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted quantifier over an image set. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker ralrnmptw when possible. (Contributed by Mario Carneiro, 20-Aug-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralrnmpt.1 | |- F = ( x e. A |-> B ) |
|
| ralrnmpt.2 | |- ( y = B -> ( ps <-> ch ) ) |
||
| Assertion | ralrnmpt | |- ( A. x e. A B e. V -> ( A. y e. ran F ps <-> A. x e. A ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrnmpt.1 | |- F = ( x e. A |-> B ) |
|
| 2 | ralrnmpt.2 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 3 | 1 | fnmpt | |- ( A. x e. A B e. V -> F Fn A ) |
| 4 | dfsbcq | |- ( w = ( F ` z ) -> ( [. w / y ]. ps <-> [. ( F ` z ) / y ]. ps ) ) |
|
| 5 | 4 | ralrn | |- ( F Fn A -> ( A. w e. ran F [. w / y ]. ps <-> A. z e. A [. ( F ` z ) / y ]. ps ) ) |
| 6 | 3 5 | syl | |- ( A. x e. A B e. V -> ( A. w e. ran F [. w / y ]. ps <-> A. z e. A [. ( F ` z ) / y ]. ps ) ) |
| 7 | nfv | |- F/ w ps |
|
| 8 | nfsbc1v | |- F/ y [. w / y ]. ps |
|
| 9 | sbceq1a | |- ( y = w -> ( ps <-> [. w / y ]. ps ) ) |
|
| 10 | 7 8 9 | cbvral | |- ( A. y e. ran F ps <-> A. w e. ran F [. w / y ]. ps ) |
| 11 | 10 | bicomi | |- ( A. w e. ran F [. w / y ]. ps <-> A. y e. ran F ps ) |
| 12 | nfmpt1 | |- F/_ x ( x e. A |-> B ) |
|
| 13 | 1 12 | nfcxfr | |- F/_ x F |
| 14 | nfcv | |- F/_ x z |
|
| 15 | 13 14 | nffv | |- F/_ x ( F ` z ) |
| 16 | nfv | |- F/ x ps |
|
| 17 | 15 16 | nfsbc | |- F/ x [. ( F ` z ) / y ]. ps |
| 18 | nfv | |- F/ z [. ( F ` x ) / y ]. ps |
|
| 19 | fveq2 | |- ( z = x -> ( F ` z ) = ( F ` x ) ) |
|
| 20 | 19 | sbceq1d | |- ( z = x -> ( [. ( F ` z ) / y ]. ps <-> [. ( F ` x ) / y ]. ps ) ) |
| 21 | 17 18 20 | cbvral | |- ( A. z e. A [. ( F ` z ) / y ]. ps <-> A. x e. A [. ( F ` x ) / y ]. ps ) |
| 22 | 6 11 21 | 3bitr3g | |- ( A. x e. A B e. V -> ( A. y e. ran F ps <-> A. x e. A [. ( F ` x ) / y ]. ps ) ) |
| 23 | 1 | fvmpt2 | |- ( ( x e. A /\ B e. V ) -> ( F ` x ) = B ) |
| 24 | 23 | sbceq1d | |- ( ( x e. A /\ B e. V ) -> ( [. ( F ` x ) / y ]. ps <-> [. B / y ]. ps ) ) |
| 25 | 2 | sbcieg | |- ( B e. V -> ( [. B / y ]. ps <-> ch ) ) |
| 26 | 25 | adantl | |- ( ( x e. A /\ B e. V ) -> ( [. B / y ]. ps <-> ch ) ) |
| 27 | 24 26 | bitrd | |- ( ( x e. A /\ B e. V ) -> ( [. ( F ` x ) / y ]. ps <-> ch ) ) |
| 28 | 27 | ralimiaa | |- ( A. x e. A B e. V -> A. x e. A ( [. ( F ` x ) / y ]. ps <-> ch ) ) |
| 29 | ralbi | |- ( A. x e. A ( [. ( F ` x ) / y ]. ps <-> ch ) -> ( A. x e. A [. ( F ` x ) / y ]. ps <-> A. x e. A ch ) ) |
|
| 30 | 28 29 | syl | |- ( A. x e. A B e. V -> ( A. x e. A [. ( F ` x ) / y ]. ps <-> A. x e. A ch ) ) |
| 31 | 22 30 | bitrd | |- ( A. x e. A B e. V -> ( A. y e. ran F ps <-> A. x e. A ch ) ) |