This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997) Reduce axiom usage. (Revised by GG, 2-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralidm | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 3 | ax-1 | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) | |
| 4 | 3 | axc4i | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
| 5 | pm2.21 | ⊢ ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 6 | sp | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 7 | 5 6 | ja | ⊢ ( ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 8 | 7 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 9 | 4 8 | impbii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
| 10 | 2 | bicomi | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| 11 | 10 | imbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 12 | 11 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 13 | 2 9 12 | 3bitrri | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| 14 | 1 13 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |