This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction for proving that a restricted class abstraction is a submagma. (Contributed by AV, 26-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabsubmgmd.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| rabsubmgmd.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| rabsubmgmd.m | ⊢ ( 𝜑 → 𝑀 ∈ Mgm ) | ||
| rabsubmgmd.cp | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ) → 𝜂 ) | ||
| rabsubmgmd.th | ⊢ ( 𝑧 = 𝑥 → ( 𝜓 ↔ 𝜃 ) ) | ||
| rabsubmgmd.ta | ⊢ ( 𝑧 = 𝑦 → ( 𝜓 ↔ 𝜏 ) ) | ||
| rabsubmgmd.et | ⊢ ( 𝑧 = ( 𝑥 + 𝑦 ) → ( 𝜓 ↔ 𝜂 ) ) | ||
| Assertion | rabsubmgmd | ⊢ ( 𝜑 → { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∈ ( SubMgm ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabsubmgmd.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | rabsubmgmd.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 3 | rabsubmgmd.m | ⊢ ( 𝜑 → 𝑀 ∈ Mgm ) | |
| 4 | rabsubmgmd.cp | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ) → 𝜂 ) | |
| 5 | rabsubmgmd.th | ⊢ ( 𝑧 = 𝑥 → ( 𝜓 ↔ 𝜃 ) ) | |
| 6 | rabsubmgmd.ta | ⊢ ( 𝑧 = 𝑦 → ( 𝜓 ↔ 𝜏 ) ) | |
| 7 | rabsubmgmd.et | ⊢ ( 𝑧 = ( 𝑥 + 𝑦 ) → ( 𝜓 ↔ 𝜂 ) ) | |
| 8 | ssrab2 | ⊢ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ⊆ 𝐵 | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → { 𝑧 ∈ 𝐵 ∣ 𝜓 } ⊆ 𝐵 ) |
| 10 | 5 | elrab | ⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ) |
| 11 | 6 | elrab | ⊢ ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) |
| 12 | 10 11 | anbi12i | ⊢ ( ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∧ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) |
| 13 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → 𝑀 ∈ Mgm ) |
| 14 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → 𝑥 ∈ 𝐵 ) | |
| 15 | simprrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → 𝑦 ∈ 𝐵 ) | |
| 16 | 1 2 | mgmcl | ⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 17 | 13 14 15 16 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 18 | simpl | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) → 𝑥 ∈ 𝐵 ) | |
| 19 | simpl | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) → 𝑦 ∈ 𝐵 ) | |
| 20 | 18 19 | anim12i | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 21 | simpr | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) → 𝜃 ) | |
| 22 | simpr | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) → 𝜏 ) | |
| 23 | 21 22 | anim12i | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) → ( 𝜃 ∧ 𝜏 ) ) |
| 24 | 20 23 | jca | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ) |
| 25 | 24 4 | sylan2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → 𝜂 ) |
| 26 | 7 17 25 | elrabd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝜃 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜏 ) ) ) → ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) |
| 27 | 12 26 | sylan2b | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∧ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) ) → ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) |
| 28 | 27 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) |
| 29 | 1 2 | issubmgm | ⊢ ( 𝑀 ∈ Mgm → ( { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∈ ( SubMgm ‘ 𝑀 ) ↔ ( { 𝑧 ∈ 𝐵 ∣ 𝜓 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) ) ) |
| 30 | 3 29 | syl | ⊢ ( 𝜑 → ( { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∈ ( SubMgm ‘ 𝑀 ) ↔ ( { 𝑧 ∈ 𝐵 ∣ 𝜓 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ( 𝑥 + 𝑦 ) ∈ { 𝑧 ∈ 𝐵 ∣ 𝜓 } ) ) ) |
| 31 | 9 28 30 | mpbir2and | ⊢ ( 𝜑 → { 𝑧 ∈ 𝐵 ∣ 𝜓 } ∈ ( SubMgm ‘ 𝑀 ) ) |