This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by AV, 21-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabsnifsb | ⊢ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni | ⊢ ( 𝑥 ∈ { 𝐴 } → 𝑥 = 𝐴 ) | |
| 2 | sbceq1a | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 3 | 2 | biimpd | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 4 | 1 3 | syl | ⊢ ( 𝑥 ∈ { 𝐴 } → ( 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 5 | 4 | imdistani | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) → ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 6 | 5 | orcd | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) → ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 7 | 2 | biimprd | ⊢ ( 𝑥 = 𝐴 → ( [ 𝐴 / 𝑥 ] 𝜑 → 𝜑 ) ) |
| 8 | 1 7 | syl | ⊢ ( 𝑥 ∈ { 𝐴 } → ( [ 𝐴 / 𝑥 ] 𝜑 → 𝜑 ) ) |
| 9 | 8 | imdistani | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ) |
| 10 | noel | ⊢ ¬ 𝑥 ∈ ∅ | |
| 11 | 10 | pm2.21i | ⊢ ( 𝑥 ∈ ∅ → ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) → ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ) |
| 13 | 9 12 | jaoi | ⊢ ( ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) → ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ) |
| 14 | 6 13 | impbii | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 15 | 14 | abbii | ⊢ { 𝑥 ∣ ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) } = { 𝑥 ∣ ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) } |
| 16 | nfv | ⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 17 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ { 𝐴 } | |
| 18 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝐴 / 𝑥 ] 𝜑 | |
| 19 | 17 18 | nfan | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) |
| 20 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ ∅ | |
| 21 | 18 | nfn | ⊢ Ⅎ 𝑥 ¬ [ 𝐴 / 𝑥 ] 𝜑 |
| 22 | 20 21 | nfan | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) |
| 23 | 19 22 | nfor | ⊢ Ⅎ 𝑥 ( ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 24 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ { 𝐴 } ↔ 𝑦 ∈ { 𝐴 } ) ) | |
| 25 | 24 | anbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 26 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ∅ ↔ 𝑦 ∈ ∅ ) ) | |
| 27 | 26 | anbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 28 | 25 27 | orbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) ↔ ( ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) ) |
| 29 | 16 23 28 | cbvabw | ⊢ { 𝑥 ∣ ( ( 𝑥 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑥 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) } = { 𝑦 ∣ ( ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) } |
| 30 | 15 29 | eqtri | ⊢ { 𝑥 ∣ ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) } = { 𝑦 ∣ ( ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) } |
| 31 | df-rab | ⊢ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ { 𝐴 } ∧ 𝜑 ) } | |
| 32 | df-if | ⊢ if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) = { 𝑦 ∣ ( ( 𝑦 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ∨ ( 𝑦 ∈ ∅ ∧ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) } | |
| 33 | 30 31 32 | 3eqtr4i | ⊢ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = if ( [ 𝐴 / 𝑥 ] 𝜑 , { 𝐴 } , ∅ ) |