This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Version of cbvab with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by Andrew Salmon, 11-Jul-2011) (Revised by GG, 23-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvabw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| cbvabw.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| cbvabw.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cbvabw | ⊢ { 𝑥 ∣ 𝜑 } = { 𝑦 ∣ 𝜓 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvabw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | cbvabw.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | cbvabw.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 1 2 3 | cbvsbvf | ⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜓 ) |
| 5 | df-clab | ⊢ ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑧 / 𝑥 ] 𝜑 ) | |
| 6 | df-clab | ⊢ ( 𝑧 ∈ { 𝑦 ∣ 𝜓 } ↔ [ 𝑧 / 𝑦 ] 𝜓 ) | |
| 7 | 4 5 6 | 3bitr4i | ⊢ ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑧 ∈ { 𝑦 ∣ 𝜓 } ) |
| 8 | 7 | eqriv | ⊢ { 𝑥 ∣ 𝜑 } = { 𝑦 ∣ 𝜓 } |