This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma factoring out common proof steps of r2alf and r2al . Introduced to reduce dependencies on axioms. (Contributed by Wolf Lammen, 9-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | r2allem.1 | ⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) | |
| Assertion | r2allem | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r2allem.1 | ⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 3 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) | |
| 4 | 3 | albii | ⊢ ( ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ↔ ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) |
| 5 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) | |
| 6 | 5 | imbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) |
| 7 | 1 4 6 | 3bitr4i | ⊢ ( ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 9 | 2 8 | bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜑 ) ) |