This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of Theorem 19.37 of Margaris p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Paul Chapman, 8-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.37zv | ⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.35 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) | |
| 2 | r19.3rzv | ⊢ ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) ) | |
| 3 | 2 | imbi1d | ⊢ ( 𝐴 ≠ ∅ → ( ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 4 | 1 3 | bitr4id | ⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) ) |