This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of Theorem 19.37 of Margaris p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Paul Chapman, 8-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.37zv | |- ( A =/= (/) -> ( E. x e. A ( ph -> ps ) <-> ( ph -> E. x e. A ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.35 | |- ( E. x e. A ( ph -> ps ) <-> ( A. x e. A ph -> E. x e. A ps ) ) |
|
| 2 | r19.3rzv | |- ( A =/= (/) -> ( ph <-> A. x e. A ph ) ) |
|
| 3 | 2 | imbi1d | |- ( A =/= (/) -> ( ( ph -> E. x e. A ps ) <-> ( A. x e. A ph -> E. x e. A ps ) ) ) |
| 4 | 1 3 | bitr4id | |- ( A =/= (/) -> ( E. x e. A ( ph -> ps ) <-> ( ph -> E. x e. A ps ) ) ) |