This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted version of Theorem 19.45 of Margaris p. 90. (Contributed by NM, 27-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.45zv | ⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.43 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) | |
| 2 | r19.9rzv | ⊢ ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) ) | |
| 3 | 2 | orbi1d | ⊢ ( 𝐴 ≠ ∅ → ( ( 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 4 | 1 3 | bitr4id | ⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) ) |