This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusin.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| qusin.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| qusin.e | ⊢ ( 𝜑 → ∼ ∈ 𝑊 ) | ||
| qusin.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| qusin.s | ⊢ ( 𝜑 → ( ∼ “ 𝑉 ) ⊆ 𝑉 ) | ||
| Assertion | qusin | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusin.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| 2 | qusin.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | qusin.e | ⊢ ( 𝜑 → ∼ ∈ 𝑊 ) | |
| 4 | qusin.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 5 | qusin.s | ⊢ ( 𝜑 → ( ∼ “ 𝑉 ) ⊆ 𝑉 ) | |
| 6 | ecinxp | ⊢ ( ( ( ∼ “ 𝑉 ) ⊆ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → [ 𝑥 ] ∼ = [ 𝑥 ] ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) | |
| 7 | 5 6 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → [ 𝑥 ] ∼ = [ 𝑥 ] ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) |
| 8 | 7 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) ) |
| 9 | 8 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) “s 𝑅 ) = ( ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) “s 𝑅 ) ) |
| 10 | eqid | ⊢ ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) | |
| 11 | 1 2 10 3 4 | qusval | ⊢ ( 𝜑 → 𝑈 = ( ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) “s 𝑅 ) ) |
| 12 | eqidd | ⊢ ( 𝜑 → ( 𝑅 /s ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) = ( 𝑅 /s ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) ) | |
| 13 | eqid | ⊢ ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) | |
| 14 | inex1g | ⊢ ( ∼ ∈ 𝑊 → ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ∈ V ) | |
| 15 | 3 14 | syl | ⊢ ( 𝜑 → ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ∈ V ) |
| 16 | 12 2 13 15 4 | qusval | ⊢ ( 𝜑 → ( 𝑅 /s ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) = ( ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) “s 𝑅 ) ) |
| 17 | 9 11 16 | 3eqtr4d | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ( ∼ ∩ ( 𝑉 × 𝑉 ) ) ) ) |