This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusecsub.x | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| qusecsub.n | ⊢ − = ( -g ‘ 𝐺 ) | ||
| qusecsub.r | ⊢ ∼ = ( 𝐺 ~QG 𝑆 ) | ||
| Assertion | qusecsub | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( [ 𝑋 ] ∼ = [ 𝑌 ] ∼ ↔ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusecsub.x | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | qusecsub.n | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | qusecsub.r | ⊢ ∼ = ( 𝐺 ~QG 𝑆 ) | |
| 4 | 1 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝐵 ) |
| 5 | 4 | anim2i | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝐵 ) ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝐵 ) ) |
| 7 | 1 2 3 | eqgabl | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑋 ∼ 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ) ) |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ∼ 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ) ) |
| 9 | 1 3 | eqger | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝐵 ) |
| 10 | 9 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ∼ Er 𝐵 ) |
| 11 | simprl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 12 | 10 11 | erth | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ∼ 𝑌 ↔ [ 𝑋 ] ∼ = [ 𝑌 ] ∼ ) ) |
| 13 | df-3an | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ) | |
| 14 | ibar | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑌 − 𝑋 ) ∈ 𝑆 ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ) ) | |
| 15 | 14 | adantl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑌 − 𝑋 ) ∈ 𝑆 ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ) ) |
| 16 | 13 15 | bitr4id | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ↔ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ) |
| 17 | 8 12 16 | 3bitr3d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( [ 𝑋 ] ∼ = [ 𝑌 ] ∼ ↔ ( 𝑌 − 𝑋 ) ∈ 𝑆 ) ) |