This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusecsub.x | |- B = ( Base ` G ) |
|
| qusecsub.n | |- .- = ( -g ` G ) |
||
| qusecsub.r | |- .~ = ( G ~QG S ) |
||
| Assertion | qusecsub | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( X e. B /\ Y e. B ) ) -> ( [ X ] .~ = [ Y ] .~ <-> ( Y .- X ) e. S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusecsub.x | |- B = ( Base ` G ) |
|
| 2 | qusecsub.n | |- .- = ( -g ` G ) |
|
| 3 | qusecsub.r | |- .~ = ( G ~QG S ) |
|
| 4 | 1 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ B ) |
| 5 | 4 | anim2i | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> ( G e. Abel /\ S C_ B ) ) |
| 6 | 5 | adantr | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( X e. B /\ Y e. B ) ) -> ( G e. Abel /\ S C_ B ) ) |
| 7 | 1 2 3 | eqgabl | |- ( ( G e. Abel /\ S C_ B ) -> ( X .~ Y <-> ( X e. B /\ Y e. B /\ ( Y .- X ) e. S ) ) ) |
| 8 | 6 7 | syl | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( X e. B /\ Y e. B ) ) -> ( X .~ Y <-> ( X e. B /\ Y e. B /\ ( Y .- X ) e. S ) ) ) |
| 9 | 1 3 | eqger | |- ( S e. ( SubGrp ` G ) -> .~ Er B ) |
| 10 | 9 | ad2antlr | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( X e. B /\ Y e. B ) ) -> .~ Er B ) |
| 11 | simprl | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( X e. B /\ Y e. B ) ) -> X e. B ) |
|
| 12 | 10 11 | erth | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( X e. B /\ Y e. B ) ) -> ( X .~ Y <-> [ X ] .~ = [ Y ] .~ ) ) |
| 13 | df-3an | |- ( ( X e. B /\ Y e. B /\ ( Y .- X ) e. S ) <-> ( ( X e. B /\ Y e. B ) /\ ( Y .- X ) e. S ) ) |
|
| 14 | ibar | |- ( ( X e. B /\ Y e. B ) -> ( ( Y .- X ) e. S <-> ( ( X e. B /\ Y e. B ) /\ ( Y .- X ) e. S ) ) ) |
|
| 15 | 14 | adantl | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( X e. B /\ Y e. B ) ) -> ( ( Y .- X ) e. S <-> ( ( X e. B /\ Y e. B ) /\ ( Y .- X ) e. S ) ) ) |
| 16 | 13 15 | bitr4id | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( X e. B /\ Y e. B ) ) -> ( ( X e. B /\ Y e. B /\ ( Y .- X ) e. S ) <-> ( Y .- X ) e. S ) ) |
| 17 | 8 12 16 | 3bitr3d | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ ( X e. B /\ Y e. B ) ) -> ( [ X ] .~ = [ Y ] .~ <-> ( Y .- X ) e. S ) ) |